| Some definitions of interest. |
|
eq_pred | Def eq('a) == {f:('a 'a  )| f = ( x:'a. y:'a. x = y) } |
| | Thm* 'a:Type. eq('a) Type |
|
bequal | Def x = y ==  (x = y T) |
| | Thm* T:Type, x,y:T. (x = y)  |
|
eq_pred_marker | Def <eq_pred:x> == x |
| | Thm* 'a:S. <eq_pred:( x:'a. y:'a. x = y)> eq('a) |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |