| Some definitions of interest. |
|
hall | Def all == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. all (('a  hbool)  hbool) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hcond | Def cond == b: . p:'a. q:'a. if b then p else q fi |
| | Thm* 'a:S. cond (hbool  'a  'a  'a) |
|
hsub | Def sub == m: . n: . nnsub(m;n) |
| | Thm* sub (hnum  hnum  hnum) |
|
nnsub | Def nnsub(m;n) == if m< n then 0 else m-n fi |
| | Thm* m,n: . nnsub(m;n)  |
|
bif | Def bif(b; bx.x(bx); by.y(by)) == if b x(*) else y( x.x) fi |
| | Thm* A:Type, b: , x:(b A), y:(( b) A). bif(b; bx.x(bx); by.y(by)) A |
|
hand | Def and == p: . q: . p q |
| | Thm* and (hbool  hbool  hbool) |
|
hequal | Def equal == x:'a. y:'a. x = y |
| | Thm* 'a:S. equal ('a  'a  hbool) |
|
hlt | Def lt == m: . n: . m< n |
| | Thm* lt (hnum  hnum  hbool) |
|
hnum | Def hnum ==  |
| | Thm* hnum S |
|
hsuc | Def suc == n: . n+1 |
| | Thm* suc (hnum  hnum) |
|
lt_int | Def i< j == if i<j true ; false fi |
| | Thm* i,j: . (i< j)  |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |