| | Some definitions of interest. |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| hequal | Def equal == x:'a. y:'a. x = y |
| | | Thm* 'a:S. equal ('a  'a  hbool) |
|
| bequal | Def x = y ==  (x = y T) |
| | | Thm* T:Type, x,y:T. (x = y)  |
|
| hor | Def or == p: . q: . p  q |
| | | Thm* or (hbool  hbool  hbool) |
|
| bor | Def p  q == if p true else q fi |
| | | Thm* p,q: . (p  q)  |
|
| hbool | Def hbool ==  |
| | | Thm* hbool S |
|
| hle | Def le == m: . n: . m n |
| | | Thm* le (hnum  hnum  hbool) |
|
| hlt | Def lt == m: . n: . m< n |
| | | Thm* lt (hnum  hnum  hbool) |
|
| hnum | Def hnum ==  |
| | | Thm* hnum S |
|
| label | Def t ...$L == t |
|
| le_int | Def i j ==  j< i |
| | | Thm* i,j: . (i j)  |
|
| lt_int | Def i< j == if i<j true ; false fi |
| | | Thm* i,j: . (i< j)  |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
| | | Thm* S |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |