Definitions hol arithmetic 2 Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
borDef p  q == if p true else q fi
Thm* p,q:. (p  q 
labelDef t  ...$L == t
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
leDef AB == B<A
Thm* i,j:. (ij Prop
le_intDef ij == j<i
Thm* i,j:. (ij 
lt_intDef i<j == if i<j true ; false fi
Thm* i,j:. (i<j 

About:
boolbfalsebtrueifthenelseintnatural_numberless
less_thansetuniverseequalmemberpropall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol arithmetic 2 Sections HOLlib Doc