Definitions hol arithmetic 2 Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ndivDef ndiv(m;n) == if n=0 then 0 else m  n fi 
Thm* m,n:. ndiv(m;n 
nmodDef nmod(m;n) == if n=0 then 0 else m rem n fi 
Thm* m,n:. nmod(m;n 
bifDef bif(bbx.x(bx); by.y(by)) == if b x(*) else y(x.x) fi
Thm* A:Type, b:x:(bA), y:((b)A). bif(bbx.x(bx); by.y(by))  A
eq_intDef i=j == if i=j true ; false fi
Thm* i,j:. (i=j 
labelDef t  ...$L == t
natDef  == {i:| 0i }
Thm*   Type
Thm*   S

About:
boolbfalsebtrueifthenelseassertintnatural_numberdivideremainder
int_eqsetlambdafunctionuniverseaxiommemberall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol arithmetic 2 Sections HOLlib Doc