| Some definitions of interest. |
|
hall | Def all == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. all (('a  hbool)  hbool) |
|
hexists | Def exists == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. exists (('a  hbool)  hbool) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
bequal | Def x = y ==  (x = y T) |
| | Thm* T:Type, x,y:T. (x = y)  |
|
hand | Def and == p: . q: . p q |
| | Thm* and (hbool  hbool  hbool) |
|
hbool | Def hbool ==  |
| | Thm* hbool S |
|
hfun | Def 'a  'b == 'a 'b |
| | Thm* 'a,'b:S. ('a  'b) S |
|
himplies | Def implies == p: . q: . p  q |
| | Thm* implies (hbool  hbool  hbool) |
|
hlt | Def lt == m: . n: . m< n |
| | Thm* lt (hnum  hnum  hbool) |
|
hnot | Def not == p: .  p |
| | Thm* not (hbool  hbool) |
|
hnum | Def hnum ==  |
| | Thm* hnum S |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |