| | Some definitions of interest. |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| hequal | Def equal == x:'a. y:'a. x = y |
| | | Thm* 'a:S. equal ('a  'a  hbool) |
|
| bequal | Def x = y ==  (x = y T) |
| | | Thm* T:Type, x,y:T. (x = y)  |
|
| hadd | Def add == m: . n: . m+n |
| | | Thm* add (hnum  hnum  hnum) |
|
| hdiv | Def div == m: . n: . ndiv(m;n) |
| | | Thm* div (hnum  hnum  hnum) |
|
| himplies | Def implies == p: . q: . p  q |
| | | Thm* implies (hbool  hbool  hbool) |
|
| hlt | Def lt == m: . n: . m< n |
| | | Thm* lt (hnum  hnum  hbool) |
|
| hmult | Def mult == m: . n: . m n |
| | | Thm* mult (hnum  hnum  hnum) |
|
| hnum | Def hnum ==  |
| | | Thm* hnum S |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
| | | Thm* S |
|
| ndiv | Def ndiv(m;n) == if n= 0 then 0 else m n fi |
| | | Thm* m,n: . ndiv(m;n)  |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |