Definitions hol arithmetic 4 Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
hallDef all == p:'ax:'a. (p(x))
Thm* 'a:S. all  (('a  hbool)  hbool)
assertDef b == if b True else False fi
Thm* b:b  Prop
hequalDef equal == x:'ay:'ax = y
Thm* 'a:S. equal  ('a  'a  hbool)
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
haddDef add == m:n:m+n
Thm* add  (hnum  hnum  hnum)
himpliesDef implies == p:q:pq
Thm* implies  (hbool  hbool  hbool)
hleDef le == m:n:mn
Thm* le  (hnum  hnum  hbool)
hnumDef hnum == 
Thm* hnum  S
hsubDef sub == m:n:. nnsub(m;n)
Thm* sub  (hnum  hnum  hnum)
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
leDef AB == B<A
Thm* i,j:. (ij Prop
nnsubDef nnsub(m;n) == if m<n then 0 else m-n fi 
Thm* m,n:. nnsub(m;n 
tlambdaDef (x:Tb(x))(x) == b(x)

About:
boolifthenelseassertintnatural_numberaddsubtractless_thansetapply
functionuniverseequalmemberpropfalsetrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol arithmetic 4 Sections HOLlib Doc