| | Some definitions of interest. |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| hequal | Def equal == x:'a. y:'a. x = y |
| | | Thm* 'a:S. equal ('a  'a  hbool) |
|
| bequal | Def x = y ==  (x = y T) |
| | | Thm* T:Type, x,y:T. (x = y)  |
|
| hcond | Def cond == b: . p:'a. q:'a. if b then p else q fi |
| | | Thm* 'a:S. cond (hbool  'a  'a  'a) |
|
| hsub | Def sub == m: . n: . nnsub(m;n) |
| | | Thm* sub (hnum  hnum  hnum) |
|
| nnsub | Def nnsub(m;n) == if m< n then 0 else m-n fi |
| | | Thm* m,n: . nnsub(m;n)  |
|
| bif | Def bif(b; bx.x(bx); by.y(by)) == if b x(*) else y( x.x) fi |
| | | Thm* A:Type, b: , x:(b A), y:(( b) A). bif(b; bx.x(bx); by.y(by)) A |
|
| hle | Def le == m: . n: . m n |
| | | Thm* le (hnum  hnum  hbool) |
|
| hnum | Def hnum ==  |
| | | Thm* hnum S |
|
| hsuc | Def suc == n: . n+1 |
| | | Thm* suc (hnum  hnum) |
|
| le_int | Def i j ==  j< i |
| | | Thm* i,j: . (i j)  |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
| | | Thm* S |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |