Selected Objects
THM | not_exp_0 |
m,n: . exp(n+1;m) = 0 |
THM | zero_less_exp |
m,n: . 0<exp(n+1;m) |
THM | odd_or_even |
n: . m: . n = (0+1+1) m n = (0+1+1) m+1  |
THM | less_exp_suc_mono |
n,m: . exp(m+1+1;n)<exp(m+1+1;n+1) |
THM | less_less_cases |
m,n: . m = n m<n n<m |
THM | greater_eq |
n,m: . True |
THM | less_eq_cases |
m,n: . m n n m |
THM | less_equal_add |
m,n: . m n  ( x: . n = m+x ) |
THM | less_eq_exists |
m,n: . m n  ( x: . n = m+x ) |
THM | not_less_equal |
m,n: . m n  n<m |
THM | less_eq_0 |
n: . n 0  n = 0  |
THM | mult_eq_0 |
m,n: . m n = 0  m = 0 n = 0  |
THM | less_mult2 |
m,n: . 0<m & 0<n  0<m n |
THM | less_eq_less_trans |
m,n,x: . m n & n<x  m<x |
THM | less_less_eq_trans |
m,n,x: . m<n & n x  m<x |
THM | fact_less |
n: . 0<fact(n) |
THM | even_odd |
n: . even(n)  odd(n) |
THM | odd_even |
n: . odd(n)  even(n) |
THM | even_or_odd |
n: . even(n) odd(n) |
THM | even_and_odd |
n: . (even(n) & odd(n)) |
THM | even_add |
m,n: . even(m+n)  (even(m)  even(n)) |
THM | even_mult |
m,n: . even(m n)  even(m) even(n) |
THM | odd_add |
m,n: . odd(m+n)  (odd(m)  odd(n)) |
THM | odd_mult |
m,n: . odd(m n)  odd(m) & odd(n) |
THM | even_double |
n: . even(2 n) |
THM | odd_double |
n: . odd(2 n+1) |
THM | even_odd_exists |
n: . (even(n)  ( m: . n = 2 m )) & (odd(n)  ( m: . n = 2 m+1 )) |
THM | even_exists |
n: . even(n)  ( m: . n = 2 m ) |
THM | odd_exists |
n: . odd(n)  ( m: . n = 2 m+1 ) |
THM | eq_less_eq |
m,n: . m = n  m n & n m |
THM | add_mono_less_eq |
m,n,x: . m+n m+x  n x |
THM | not_suc_less_eq_0 |
n: . n+1 0 |
THM | not_leq |
m,n: . m n  n+1 m |
THM | not_num_eq |
m,n: . m = n  m+1 n n+1 m |
THM | not_greater |
m,n: . n<m  m n |
THM | not_greater_eq |
m,n: . n m  m+1 n |
THM | suc_one_add |
n: . n+1 = 1+n  |
THM | suc_add_sym |
m,n: . m+n+1 = n+1+m  |
THM | not_suc_add_less_eq |
m,n: . m+n+1 m |
THM | mult_less_eq_suc |
m,n,x: . m n  (x+1) m (x+1) n |
THM | sub_left_add |
m,n,x: . m+nnsub(n;x) = if n x then m else nnsub(m+n;x) fi |
THM | sub_right_add |
m,n,x: . nnsub(m;n)+x = if m n then x else nnsub(m+x;n) fi |
THM | sub_left_sub |
m,n,x: . nnsub(m;nnsub(n;x)) = if n x then m else nnsub(m+x;n) fi |
THM | sub_right_sub |
m,n,x: . nnsub(nnsub(m;n);x) = nnsub(m;n+x) |
THM | sub_left_suc |
m,n: . nnsub(m;n)+1 = if m n then 0+1 else nnsub(m+1;n) fi |
THM | sub_left_less_eq |
m,n,x: . m nnsub(n;x)  m+x n m 0 |
THM | sub_right_less_eq |
m,n,x: . nnsub(m;n) x  m n+x |
THM | sub_left_less |
m,n,x: . m<nnsub(n;x)  m+x<n |
THM | sub_right_less |
m,n,x: . nnsub(m;n)<x  m<n+x & 0<x |
THM | sub_left_greater_eq |
m,n,x: . nnsub(n;x) m  n m+x |
THM | sub_right_greater_eq |
m,n,x: . x nnsub(m;n)  n+x m x 0 |
THM | sub_left_greater |
m,n,x: . nnsub(n;x)<m  n<m+x & 0<m |
THM | sub_right_greater |
m,n,x: . x<nnsub(m;n)  n+x<m |
THM | sub_left_eq |
m,n,x: . m = nnsub(n;x)  m+x = n m 0 & n x |
THM | sub_right_eq |
m,n,x: . nnsub(m;n) = x  m = n+x m n & x 0 |