| | Some definitions of interest. |
|
| happend | Def append == l1:'a List. l2:'a List. l1 @ l2 |
| | | Thm* 'a:S. append (hlist('a)  hlist('a)  hlist('a)) |
|
| append | Def as @ bs == Case of as; nil bs ; a.as' cons(a; (as' @ bs)) (recursive) |
| | | Thm* T:Type, as,bs:T List. (as @ bs) T List |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| hequal | Def equal == x:'a. y:'a. x = y |
| | | Thm* 'a:S. equal ('a  'a  hbool) |
|
| bequal | Def x = y ==  (x = y T) |
| | | Thm* T:Type, x,y:T. (x = y)  |
|
| hfun | Def 'a  'b == 'a 'b |
| | | Thm* 'a,'b:S. ('a  'b) S |
|
| hlist | Def hlist('a) == 'a List |
| | | Thm* 'a:S. hlist('a) S |
|
| hmap | Def map == f:'a 'b. l:'a List. map(f;l) |
| | | Thm* 'a,'b:S. map (('a  'b)  hlist('a)  hlist('b)) |
|
| map | Def map(f;as) == Case of as; nil nil ; a.as' cons((f(a)); map(f;as'))
Def (recursive) |
| | | Thm* A,B:Type, f:(A B), l:A List. map(f;l) B List |
|
| stype | Def S == {T:Type| x:T. True } |
| | | Thm* S Type{2} |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |