| | Some definitions of interest. |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| every | Def every(p;l) == if null(l) then true else (p(head(l))) every(p;tl(l)) fi
Def (recursive) |
| | | Thm* 'a:Type, p:('a  ), l:'a List. every(p;l)  |
|
| band | Def p q == if p q else false fi |
| | | Thm* p,q: . (p q)  |
|
| bequal | Def x = y ==  (x = y T) |
| | | Thm* T:Type, x,y:T. (x = y)  |
|
| iff | Def P  Q == (P  Q) & (P  Q) |
| | | Thm* A,B:Prop. (A  B) Prop |
|
| stype | Def S == {T:Type| x:T. True } |
| | | Thm* S Type{2} |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |