hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def is_num_rep
Def == m:P:
Def == m:((P(zero_rep))(n:. (P(n))(P(suc_rep(n)))))(P(m))

is mentioned by

Thm* and
Thm* (all(a:hnum. equal(abs_num(rep_num(a)),a))
Thm* ,all(r:hind. equal(is_num_rep(r),equal(rep_num(abs_num(r)),r))))
[hnum_iso_def]
Thm* exists(rep:hnum  hind. type_definition(is_num_rep,rep))[hnum_ty_def]
Thm* all
Thm* (m:hind. equal
Thm* (m:hind. (is_num_rep(m)
Thm* (m:hind. ,all
Thm* (m:hind. ,(P:hind  hbool. implies
Thm* (m:hind. ,(P:hind  hbool. (and
Thm* (m:hind. ,(P:hind  hbool. ((P(zero_rep)
Thm* (m:hind. ,(P:hind  hbool. (,all(n:hind. implies(P(n),P(suc_rep(n)))))
Thm* (m:hind. ,(P:hind  hbool. ,P(m)))))
[his_num_rep_wd]
Thm* iso_pair(;;is_num_rep;rep_num;abs_num)[num_iso]

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol num Sections HOLlib Doc