WhoCites Definitions hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Who Cites his num rep?
his_num_repDef is_num_rep
Def == m:P:
Def == m:((P(zero_rep))(n:. (P(n))(P(suc_rep(n)))))(P(m))
Thm* is_num_rep  (hind  hbool)
hzero_repDef zero_rep == @x:. (y:x = suc_rep(y )
Thm* zero_rep  hind
hsuc_repDef suc_rep == x:. (@f:. (one_one(;;f) & onto(;;f)))(x)
Thm* suc_rep  (hind  hind)
bimpliesDef pq == p  q
Thm* p,q:pq  
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
ballDef x:TP(x) == (x:TP(x))
Thm* T:Type, P:(T). (x:TP(x))  
bandDef pq == if p q else false fi
Thm* p,q:. (pq 
tlambdaDef (x:Tb(x))(x) == b(x)
ontoDef onto('a;'b;f) == y:'bx:'ay = f(x)
Thm* 'a,'b:Type, f:('a'b). onto('a;'b;f Prop
leDef AB == B<A
Thm* i,j:. (ij Prop
notDef A == A  False
Thm* A:Prop. (A Prop
one_oneDef one_one('a;'b;f) == x,y:'af(x) = f(y 'b  x = y
Thm* 'a,'b:Type, f:('a'b). one_one('a;'b;f Prop
chooseDef @x:TP(x) == InjCase(lem({x:TP(x) }); xx, arb(T))
Thm* T:S, P:(TType). (@x:TP(x))  T
bnotDef b == if b false else true fi
Thm* b:b  
borDef p  q == if p true else q fi
Thm* p,q:. (p  q 
assertDef b == if b True else False fi
Thm* b:b  Prop
prop_to_boolDef P == InjCase(lem(P) ; true; false)
Thm* P:Prop. (P 
arbDef arb(T) == InjCase(lem(T); xx, "uu")
Thm* T:S. arb(T T

Syntax:is_num_rep has structure: his_num_rep

About:
boolbfalsebtrueifthenelseassertintnatural_numberless_thantoken
decidesetapplyfunctionuniverse
equalmemberpropimpliesandfalsetrueallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

WhoCites Definitions hol num Sections HOLlib Doc