| Who Cites his num rep? |
|
his_num_rep | Def is_num_rep
Def == m: .  P:  
Def == m: .  ((P(zero_rep)) ( n: . (P(n))  (P(suc_rep(n)))))  (P(m)) |
| | Thm* is_num_rep (hind  hbool) |
|
hzero_rep | Def zero_rep == @x: . ( y: . x = suc_rep(y) ) |
| | Thm* zero_rep hind |
|
hsuc_rep | Def suc_rep == x: . (@f:   . (one_one( ; ;f) & onto( ; ;f)))(x) |
| | Thm* suc_rep (hind  hind) |
|
bimplies | Def p  q ==  p  q |
| | Thm* p,q: . p  q  |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
ball | Def  x:T. P(x) ==  ( x:T. P(x)) |
| | Thm* T:Type, P:(T  ). ( x:T. P(x))  |
|
band | Def p q == if p q else false fi |
| | Thm* p,q: . (p q)  |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |
|
onto | Def onto('a;'b;f) == y:'b. x:'a. y = f(x) |
| | Thm* 'a,'b:Type, f:('a 'b). onto('a;'b;f) Prop |
|
le | Def A B == B<A |
| | Thm* i,j: . (i j) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
one_one | Def one_one('a;'b;f) == x,y:'a. f(x) = f(y) 'b  x = y |
| | Thm* 'a,'b:Type, f:('a 'b). one_one('a;'b;f) Prop |
|
choose | Def @x:T. P(x) == InjCase(lem({x:T| P(x) }); x. x, arb(T)) |
| | Thm* T:S, P:(T Type). (@x:T. P(x)) T |
|
bnot | Def  b == if b false else true fi |
| | Thm* b: .  b  |
|
bor | Def p  q == if p true else q fi |
| | Thm* p,q: . (p  q)  |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
prop_to_bool | Def  P == InjCase(lem(P) ; true ; false ) |
| | Thm* P:Prop. ( P)  |
|
arb | Def arb(T) == InjCase(lem(T); x. x, "uu") |
| | Thm* T:S. arb(T) T |