Definitions hol num HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Defined Operators mentioned in hol num

Defzero[hzero]
Defi>j[gt]core
DefP  Q[implies]core
DefDec(P)[decidable]core
Defiso_pair('a;'b;P;rep;abs)[iso_pair]hol
Deftype_definition[htype_definition]hol bool
Deftype_definition('a;'b;P;rep)[type_definition]hol
DefP  Q[iff]core
Defabs_num[habs_num]
Defhnum[hnum]
Defhind[hind]hol min
Def'a  'b[hfun]hol min
Defis_num_rep[his_num_rep]
Defonto[honto]hol bool
Defnot[hnot]hol bool
Defone_one[hone_one]hol bool
Defand[hand]hol bool
Defselect[hselect]hol min
Defequal[hequal]hol min
Defall[hall]hol bool
Defexists[hexists]hol bool
Defx:TP(x)[ball]hol
Def@x:'ap(x)[bchoose]hol min
Defx:TP(x)[bexists]hol
Defb[assert]bool 1
Defimplies[himplies]hol min
Defhbool[hbool]hol min
Defsuc[hsuc]
Defrep_num[hrep_num]
Defncompose(f;n;x)[ncompose]
Defi=j[eq_int]bool 1
Defbif(bbx.x(bx); by.y(by))[bif]hol
DefY[ycomb]core
Defzero_rep[hzero_rep]
Defsuc_rep[hsuc_rep]
Def[nat]int 1
Defonto('a;'b;f)[onto]hol bool
DefAB[le]core
DefA[not]core
Defone_one('a;'b;f)[one_one]hol bool
DefP & Q[and]core
Def@x:TP(x)[choose]hol
Defx:Tb(x)[tlambda]fun 1
Defx:AB(x)[all]core
Defpq[band]bool 1
Defpq[bimplies]bool 1
Def[bool]bool 1
DefP  Q[rev_implies]core
Defx = y[bequal]hol
DefP[prop_to_bool]hol
Defb[bnot]bool 1
Defarb(T)[arb]hol
Defp  q[bor]bool 1

About:
productboolbfalsebtrueifthenelseassertdecidableunitint
natural_numberaddsubtractint_eqless_thantokenunion
decidesetlambdaapply
functionycombequalaxiomimpliesandorfalsetrueall
exists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol num HOLlib Doc