| Who Cites habs num? |
|
habs_num | Def abs_num == n: . @m: . (n = rep_num(m) ) |
| | Thm* abs_num (hind  hnum) |
|
hrep_num | Def rep_num == n: . ncompose(suc_rep;n;zero_rep) |
| | Thm* rep_num (hnum  hind) |
|
hzero_rep | Def zero_rep == @x: . ( y: . x = suc_rep(y) ) |
| | Thm* zero_rep hind |
|
hsuc_rep | Def suc_rep == x: . (@f:   . (one_one( ; ;f) & onto( ; ;f)))(x) |
| | Thm* suc_rep (hind  hind) |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
choose | Def @x:T. P(x) == InjCase(lem({x:T| P(x) }); x. x, arb(T)) |
| | Thm* T:S, P:(T Type). (@x:T. P(x)) T |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |
|
ncompose | Def ncompose(f;n;x) == if n= 0 then x else f(ncompose(f;n-1;x)) fi (recursive) |
| | Thm* 'a:Type, n: , x:'a, f:('a 'a). ncompose(f;n;x) 'a |
|
le | Def A B == B<A |
| | Thm* i,j: . (i j) Prop |
|
arb | Def arb(T) == InjCase(lem(T); x. x, "uu") |
| | Thm* T:S. arb(T) T |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
onto | Def onto('a;'b;f) == y:'b. x:'a. y = f(x) |
| | Thm* 'a,'b:Type, f:('a 'b). onto('a;'b;f) Prop |
|
one_one | Def one_one('a;'b;f) == x,y:'a. f(x) = f(y) 'b  x = y |
| | Thm* 'a,'b:Type, f:('a 'b). one_one('a;'b;f) Prop |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j)  |
|
bif | Def bif(b; bx.x(bx); by.y(by)) == if b x(*) else y( x.x) fi |
| | Thm* A:Type, b: , x:(b A), y:(( b) A). bif(b; bx.x(bx); by.y(by)) A |