WhoCites Definitions hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Who Cites habs num?
habs_numDef abs_num == n:. @m:. (n = rep_num(m )
Thm* abs_num  (hind  hnum)
hrep_numDef rep_num == n:. ncompose(suc_rep;n;zero_rep)
Thm* rep_num  (hnum  hind)
hzero_repDef zero_rep == @x:. (y:x = suc_rep(y )
Thm* zero_rep  hind
hsuc_repDef suc_rep == x:. (@f:. (one_one(;;f) & onto(;;f)))(x)
Thm* suc_rep  (hind  hind)
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
chooseDef @x:TP(x) == InjCase(lem({x:TP(x) }); xx, arb(T))
Thm* T:S, P:(TType). (@x:TP(x))  T
tlambdaDef (x:Tb(x))(x) == b(x)
ncomposeDef ncompose(f;n;x) == if n=0 then x else f(ncompose(f;n-1;x)) fi   (recursive)
Thm* 'a:Type, n:x:'af:('a'a). ncompose(f;n;x 'a
leDef AB == B<A
Thm* i,j:. (ij Prop
arbDef arb(T) == InjCase(lem(T); xx, "uu")
Thm* T:S. arb(T T
notDef A == A  False
Thm* A:Prop. (A Prop
ontoDef onto('a;'b;f) == y:'bx:'ay = f(x)
Thm* 'a,'b:Type, f:('a'b). onto('a;'b;f Prop
one_oneDef one_one('a;'b;f) == x,y:'af(x) = f(y 'b  x = y
Thm* 'a,'b:Type, f:('a'b). one_one('a;'b;f Prop
eq_intDef i=j == if i=j true ; false fi
Thm* i,j:. (i=j 
bifDef bif(bbx.x(bx); by.y(by)) == if b x(*) else y(x.x) fi
Thm* A:Type, b:x:(bA), y:((b)A). bif(bbx.x(bx); by.y(by))  A

Syntax:abs_num has structure: habs_num

About:
boolbfalsebtrueifthenelseassertintnatural_numbersubtract
int_eqless_thantokendecide
setlambdaapplyfunctionrecursive_def_noticeuniverse
equalaxiommemberpropimpliesandfalseallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

WhoCites Definitions hol num Sections HOLlib Doc