hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def zero_rep == @x:. (y:x = suc_rep(y )

is mentioned by

Thm* equal(0,abs_num(zero_rep))[hzero_def]
Thm* all
Thm* (m:hind. equal
Thm* (m:hind. (is_num_rep(m)
Thm* (m:hind. ,all
Thm* (m:hind. ,(P:hind  hbool. implies
Thm* (m:hind. ,(P:hind  hbool. (and
Thm* (m:hind. ,(P:hind  hbool. ((P(zero_rep)
Thm* (m:hind. ,(P:hind  hbool. (,all(n:hind. implies(P(n),P(suc_rep(n)))))
Thm* (m:hind. ,(P:hind  hbool. ,P(m)))))
[his_num_rep_wd]
Thm* equal(zero_rep,select(x:hind. all(y:hind. not(equal(x,suc_rep(y))))))[hzero_rep_def]
Def rep_num == n:. ncompose(suc_rep;n;zero_rep)[hrep_num]
Def is_num_rep
Def == m:P:
Def == m:((P(zero_rep))(n:. (P(n))(P(suc_rep(n)))))(P(m))
[his_num_rep]

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol num Sections HOLlib Doc