| | Some definitions of interest. |
|
| hrep_num | Def rep_num == n: . ncompose(suc_rep;n;zero_rep) |
| | | Thm* rep_num (hnum  hind) |
|
| choose | Def @x:T. P(x) == InjCase(lem({x:T| P(x) }); x. x, arb(T)) |
| | | Thm* T:S, P:(T Type). (@x:T. P(x)) T |
|
| hind | Def hind ==  |
| | | Thm* hind S |
|
| hnum | Def hnum ==  |
| | | Thm* hnum S |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
| | | Thm* S |