| Some definitions of interest. |
|
hall | Def all == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. all (('a  hbool)  hbool) |
|
hexists | Def exists == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. exists (('a  hbool)  hbool) |
|
his_pair | Def is_pair == p:'a 'b  .  x:'a.  y:'b. (p = (mk_pair(x,y))) |
| | Thm* 'a,'b:S. is_pair (('a  'b  hbool)  hbool) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hbool | Def hbool ==  |
| | Thm* hbool S |
|
hequal | Def equal == x:'a. y:'a. x = y |
| | Thm* 'a:S. equal ('a  'a  hbool) |
|
hfun | Def 'a  'b == 'a 'b |
| | Thm* 'a,'b:S. ('a  'b) S |
|
hmk_pair | Def mk_pair == x:'a. y:'b. a:'a. b:'b. (a = x) (b = y) |
| | Thm* 'a,'b:S. mk_pair ('a  'b  'a  'b  hbool) |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |