| Some definitions of interest. |
|
hexists | Def exists == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. exists (('a  hbool)  hbool) |
|
his_pair | Def is_pair == p:'a 'b  .  x:'a.  y:'b. (p = (mk_pair(x,y))) |
| | Thm* 'a,'b:S. is_pair (('a  'b  hbool)  hbool) |
|
htype_definition | Def type_definition == P:'a  . rep:'b 'a.  type_definition('a;'b;P;rep) |
| | Thm* 'a,'b:S. type_definition (('a  hbool)  ('b  'a)  hbool) |
|
type_definition | Def type_definition('a;'b;P;rep)
Def == ( x',x'':'b. rep(x') = rep(x'') 'a  x' = x'')
Def == & ( x:'a. (P(x))  ( x':'b. x = rep(x'))) |
| | Thm* 'a,'b:Type, P:('a  ), rep:('b 'a). type_definition('a;'b;P;rep) Prop |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hbool | Def hbool ==  |
| | Thm* hbool S |
|
hfun | Def 'a  'b == 'a 'b |
| | Thm* 'a,'b:S. ('a  'b) S |
|
hprod | Def hprod('a; 'b) == 'a 'b |
| | Thm* 'a,'b:S. hprod('a; 'b) S |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |