Definitions hol prim rec Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef b == if b True else False fi
Thm* b:b  Prop
preDef pre(n) == if n=0 then 0 else n-1 fi 
Thm* n:. pre(n 
eq_intDef i=j == if i=j true ; false fi
Thm* i,j:. (i=j 
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
leDef AB == B<A
Thm* i,j:. (ij Prop
notDef A == A  False
Thm* A:Prop. (A Prop

About:
boolbfalsebtrueifthenelseassertintnatural_numbersubtractint_eqless_than
setuniversememberpropimpliesfalsetrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol prim rec Sections HOLlib Doc