Definitions hol prim rec Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ballDef x:TP(x) == (x:TP(x))
Thm* T:Type, P:(T). (x:TP(x))  
bexistsDef x:TP(x) == (x:TP(x))
Thm* T:Type, P:(T). (x:TP(x))  
assertDef b == if b True else False fi
Thm* b:b  Prop
bandDef pq == if p q else false fi
Thm* p,q:. (pq 
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
bimpliesDef pq == p  q
Thm* p,q:pq  
bnotDef b == if b false else true fi
Thm* b:b  
lt_intDef i<j == if i<j true ; false fi
Thm* i,j:. (i<j 
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
notDef A == A  False
Thm* A:Prop. (A Prop

About:
boolbfalsebtrueifthenelseassertintnatural_number
lesssetfunctionuniverseequal
memberpropimpliesfalsetrueallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol prim rec Sections HOLlib Doc