Definitions hol prim rec Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
hallDef all == p:'ax:'a. (p(x))
Thm* 'a:S. all  (('a  hbool)  hbool)
assertDef b == if b True else False fi
Thm* b:b  Prop
hequalDef equal == x:'ay:'ax = y
Thm* 'a:S. equal  ('a  'a  hbool)
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
handDef and == p:q:pq
Thm* and  (hbool  hbool  hbool)
hboolDef hbool == 
Thm* hbool  S
hfunDef 'a  'b == 'a'b
Thm* 'a,'b:S. ('a  'b S
himpliesDef implies == p:q:pq
Thm* implies  (hbool  hbool  hbool)
hltDef lt == m:n:m<n
Thm* lt  (hnum  hnum  hbool)
hnumDef hnum == 
Thm* hnum  S
hsimp_rec_relDef simp_rec_rel
Def == fun:'ax:'af:'a'an:(fun(0) = x
Def == & (m:m<n  fun(m+1) = f(fun(m))))
Thm* 'a:S. simp_rec_rel  ((hnum  'a 'a  ('a  'a hnum  hbool)
hsucDef suc == n:n+1
Thm* suc  (hnum  hnum)
stypeDef S == {T:Type| x:T. True }
Thm* S  Type{2}
tlambdaDef (x:Tb(x))(x) == b(x)

About:
boolifthenelseassertnatural_numberaddless_thansetapplyfunctionuniverse
equalmemberpropimpliesandfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol prim rec Sections HOLlib Doc