Definitions hol prim rec Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
bchooseDef @x:'ap(x) == @x:'ap(x)
Thm* 'a:S, p:('a). (@x:'ap(x))  'a
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
bifDef bif(bbx.x(bx); by.y(by)) == if b x(*) else y(x.x) fi
Thm* A:Type, b:x:(bA), y:((b)A). bif(bbx.x(bx); by.y(by))  A
natDef  == {i:| 0i }
Thm*   Type
Thm*   S

About:
boolifthenelseassertintnatural_numbersetlambda
functionuniverseequalaxiommemberall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol prim rec Sections HOLlib Doc