Definitions
hol
prim
rec
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
bchoose
Def
@
x
:
'a
.
p
(
x
) == @
x
:
'a
.
p
(
x
)
Thm*
'a
:S,
p
:(
'a
). (@
x
:
'a
.
p
(
x
))
'a
bequal
Def
x
=
y
==
(
x
=
y
T
)
Thm*
T
:Type,
x
,
y
:
T
. (
x
=
y
)
nat
Def
== {
i
:
| 0
i
}
Thm*
Type
Thm*
S
not
Def
A
==
A
False
Thm*
A
:Prop. (
A
)
Prop
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
hol
prim
rec
Sections
HOLlib
Doc