| | Some definitions of interest. |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| hequal | Def equal == x:'a. y:'a. x = y |
| | | Thm* 'a:S. equal ('a  'a  hbool) |
|
| hprim_rec_fun | Def prim_rec_fun
Def == x:'a. f:'a    'a. simp_rec
Def == x:'a. f:'a    'a. (( n: . x)
Def == x:'a. f:'a    'a. , fun:  'a. n: . f(fun(pre(n)),n)) |
| | | Thm* 'a:S. prim_rec_fun ('a  ('a  hnum  'a)  hnum  hnum  'a) |
|
| hfun | Def 'a  'b == 'a 'b |
| | | Thm* 'a,'b:S. ('a  'b) S |
|
| hnum | Def hnum ==  |
| | | Thm* hnum S |
|
| hpre | Def pre == n: . pre(n) |
| | | Thm* pre (hnum  hnum) |
|
| hsimp_rec | Def simp_rec == x:'a. f:'a 'a. n: . ncompose(f;n;x) |
| | | Thm* 'a:S. simp_rec ('a  ('a  'a)  hnum  'a) |
|
| label | Def t ...$L == t |
|
| stype | Def S == {T:Type| x:T. True } |
| | | Thm* S Type{2} |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |