| | Some definitions of interest. |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| himplies | Def implies == p: . q: . p  q |
| | | Thm* implies (hbool  hbool  hbool) |
|
| hlt | Def lt == m: . n: . m< n |
| | | Thm* lt (hnum  hnum  hbool) |
|
| hnum | Def hnum ==  |
| | | Thm* hnum S |
|
| hsuc | Def suc == n: . n+1 |
| | | Thm* suc (hnum  hnum) |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |