hol sum Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
RankTheoremName
2Thm* 'a,'b:S.
Thm* and
Thm* (all(a:hsum('a'b). equal(abs_sum(rep_sum(a)),a))
Thm* ,all
Thm* ,(r:hbool  'a  'b  hbool. equal
Thm* ,(r:hbool  'a  'b  hbool. (is_sum_rep(r)
Thm* ,(r:hbool  'a  'b  hbool. ,equal(rep_sum(abs_sum(r)),r))))
[hsum_iso_def]
cites the following:
1Thm* 'a,'b:S, P:('b), rep:('a'b), abs:('b'a).
Thm* iso_pair('a;'b;P;rep;abs)
Thm* 
Thm* (a:'aabs(rep(a)) = a) & (r:'bP(r) = ((rep(abs(r))) = r))
[iso_pair_char]
0Thm* 'a,'b:S. 'a'b  S[function_wf_stype]
0Thm* T:S, P,Q:(TType). (x:TP(x Q(x))  (@x:TP(x)) = (@x:TQ(x))[choose_functionality_axiom]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
hol sum Sections HOLlib Doc