Rank | Theorem | Name |
2 | Thm* 'a,'b:S.
Thm* and
Thm* (all( a:hsum('a; 'b). equal(abs_sum(rep_sum(a)),a))
Thm* ,all
Thm* ,( r:hbool  'a  'b  hbool. equal
Thm* ,( r:hbool  'a  'b  hbool. (is_sum_rep(r)
Thm* ,( r:hbool  'a  'b  hbool. ,equal(rep_sum(abs_sum(r)),r)))) | [hsum_iso_def] |
cites the following: |
1 | Thm* 'a,'b:S, P:('b  ), rep:('a 'b), abs:('b 'a).
Thm* iso_pair('a;'b;P;rep;abs)
Thm* 
Thm* ( a:'a. abs(rep(a)) = a) & ( r:'b. P(r) = ((rep(abs(r))) = r)) | [iso_pair_char] |
0 | Thm* 'a,'b:S. 'a 'b S | [function_wf_stype] |
0 | Thm* T:S, P,Q:(T Type). ( x:T. P(x)  Q(x))  (@x:T. P(x)) = (@x:T. Q(x)) | [choose_functionality_axiom] |