hol
sum
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Rank
Theorem
Name
4
Thm*
'a
,
'b
:S.
Thm*
exists
Thm*
(
rep
:hsum(
'a
;
'b
)
hbool
'a
'b
hbool. type_definition
Thm* (
rep
:hsum(
'a
;
'b
)
hbool
'a
'b
hbool.
(is_sum_rep
Thm* (
rep
:hsum(
'a
;
'b
)
hbool
'a
'b
hbool.
,
rep
))
[hsum_ty_def]
cites the following:
3
Thm*
'a
,
'b
:S,
u
,
v
:
'a
+
'b
. rep_sum(
u
) = rep_sum(
v
)
'a
'b
u
=
v
[hrep_sum_inj]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
hol
sum
Sections
HOLlib
Doc