(5steps total)
PrintForm
Definitions
Lemmas
hol
sum
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
hsum
ty
def
'a
,
'b
:S.
exists
(
rep
:hsum(
'a
;
'b
)
hbool
'a
'b
hbool. type_definition
(
rep
:hsum(
'a
;
'b
)
hbool
'a
'b
hbool.
(is_sum_rep
(
rep
:hsum(
'a
;
'b
)
hbool
'a
'b
hbool.
,
rep
))
By:
Simpsetp [`hol_to_nuprl`] THEN StrongAuto
Generated subgoal:
1
1.
'a
: S
2.
'b
: S
rep
:(hsum(
'a
;
'b
)
hbool
'a
'b
hbool).
type_definition(hbool
'a
'b
hbool;hsum(
'a
;
'b
);is_sum_rep;
rep
)
4
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(5steps total)
PrintForm
Definitions
Lemmas
hol
sum
Sections
HOLlib
Doc