Thm* i,j:, F:({i..j}Prop). (k:{i..j}. Dec(F(k))) Dec(k:{i..j}. F(k)) | [decidable__all_int_seg] |
Thm* i,j:, F:({i..j}Prop). (k:{i..j}. Dec(F(k))) Dec(k:{i..j}. F(k)) | [decidable__ex_int_seg] |
Thm* i,j:.
Thm* i<j
Thm*
Thm* (F:({i..j}Prop). (k:{i..j}. F(k)) F(i) & (k:{(i+1)..j}. F(k))) | [split_int_seg_all_dom_sfa] |
Thm* i,j:.
Thm* i<j
Thm*
Thm* (F:({i..j}Prop). (k:{i..j}. F(k)) F(i) (k:{(i+1)..j}. F(k))) | [split_int_seg_exist_dom_sfa] |
Thm* i:, j:{i...}. WellFnd{u}({i..j};x,y.x>y) | [int_seg_well_founded_down] |
Thm* i:, j:{i+1...}, E:({i..j}Prop).
Thm* E(i) (k:{(i+1)..j}. E(k-1) E(k)) (k:{i..j}. E(k)) | [int_seg_ind] |
Thm* i:, j:{i...}. WellFnd{u}({i..j};x,y.x<y) | [int_seg_well_founded_up] |
Thm* i:, E:({...i}Prop).
Thm* E(i) (k:{...i-1}. E(k+1) E(k)) (k:{...i}. E(k)) | [int_lower_ind] |
Thm* n:. WellFnd{i}({...n};x,y.x>y) | [int_lower_well_founded] |
Thm* i:, E:({i...}Prop).
Thm* E(i) (k:{i+1...}. E(k-1) E(k)) (k:{i...}. E(k)) | [int_upper_ind] |
Thm* n:. WellFnd{i}({n...};x,y.x<y) | [int_upper_well_founded] |
Thm* a:, n:. a = (a n)n+(a mod n) | [div_floor_mod_sum] |
Thm* a:, n:. 0(a mod n) & (a mod n)<n | [mod_bounds] |
Thm* a:, n:. (a mod n) | [modulus_wf] |
Thm* a:, b:. |a| = |b| (a rem b) = 0 | [rem_eq_args_z] |
Thm* a:. (a rem a) = 0 | [rem_eq_args] |
Thm* a:, b:. |a|<|b| (a rem b) = a | [rem_base_case_z] |
Thm* a:, n:. ((a rem n) rem n) = (a rem n) | [rem_rem_to_rem] |
Thm* i,j:, n:. (((i rem n)+(j rem n)) rem n) = ((i+j) rem n) | [rem_addition] |
Thm* a,b:, n:. ((a+bn) rem n) = (a rem n) | [rem_invariant] |
Thm* a:, n:. an (a rem n) = ((a-n) rem n) | [rem_rec_case] |
Thm* a:, n:. |a|<|n| (a rem n) = a | [rem_gen_base_case] |
Thm* a:, n:. a<n (a rem n) = a | [rem_base_case] |
Thm* a:, n:. an (a n) = ((a-n) n)+1 | [div_rec_case] |
Thm* a:, n:. a<n (a n) = 0 | [div_base_case] |
Thm* a:, n:. Rem(a;n;a rem n) | [rem_fun_sat_rem_nrel] |
Thm* a:, n:, k:. k(a n) kna | [div_lbound_1] |
Thm* a:, n:, p,q:. Div(a;n;p) Div(a;n;q) p = q | [div_unique] |
Thm* a:, n:. q:. Div(a;n;q) & (a n) = q | [div_elim] |
Thm* a:, n:. Div(a;n;a n) | [div_fun_sat_div_nrel] |
Thm* a:, n:. 0(a n) | [div_bounds_1] |
Thm* a:, n:. |a rem n|<|n| | [rem_mag_bound] |
Thm* a:, n:. (a rem n) = (a rem -n) | [rem_sym_2] |
Thm* a:, n:. (a rem n) = -((-a) rem n) | [rem_sym_1a] |
Thm* a:, n:. -(a rem n) = ((-a) rem n) | [rem_sym_1] |
Thm* a:, b:. |a rem b|<|b| | [rem_bounds_z] |
Thm* a:, n:{...-1}. (a rem n) = (a rem -n) | [rem_4_to_1] |
Thm* a:{...0}, n:{...-1}. (a rem n) = -((-a) rem -n) | [rem_3_to_1] |
Thm* a:{...0}, n:. (a rem n) = -((-a) rem n) | [rem_2_to_1] |
Thm* a:, n:{...-1}. (a n) {...0} | [division_typing2b_sfa] |
Thm* a:{...0}, n:. (a n) {...0} | [division_typing1b_sfa] |
Thm* a:{...0}, n:{...-1}. (a n) | [division_typing2a_sfa] |
Thm* a:, n:. (a n) | [division_typing1a_sfa] |
Thm* a:, b:{...-1}. (a b) = -(a (-b)) | [div_4_to_1] |
Thm* a:{...0}, b:{...-1}. (a b) = ((-a) (-b)) | [div_3_to_1] |
Thm* a:{...0}, b:. (a b) = -((-a) b) | [div_2_to_1] |
Thm* a:, b:. ((-a) rem b) = -(a rem b) | [rem_antisym] |
Thm* a:, b:. (a rem -b) = (a rem b) | [rem_sym] |
Thm* a:, n:{...-1}. (a rem n) (-n) | [rem_bounds_4_typing_sfa] |
Thm* a:{...0}, n:{...-1}. -(a rem n) (-n) | [rem_bounds_3_typing_sfa] |
Thm* a:{...0}, n:. -(a rem n) n | [rem_bounds_2_typing_sfa] |
Thm* a:, n:. (a rem n) n | [rem_bounds_1_typing_sfa] |
Thm* a:, n:{...-1}. 0(a rem n) & (a rem n)<-n | [rem_bounds_4] |
Thm* a:{...0}, n:{...-1}. 0(a rem n) & (a rem n)>n | [rem_bounds_3] |
Thm* a:{...0}, n:. 0(a rem n) & (a rem n)>-n | [rem_bounds_2] |
Thm* a:, n:. 0(a rem n) & (a rem n)<n | [rem_bounds_1] |
Thm* a:, n:. (a rem n) = a-(a n)n | [rem_to_div] |
Thm* a:, n:. a = (a n)n+(a rem n) | [div_rem_sum] |
Thm* k:, r1,r2:k, q1,q2:. q1k-r1q2k-r2 q1q2 | [division_mono2_sfa] |
Thm* k:, r1,r2:k, q1,q2:. q1k+r1q2k+r2 q1q2 | [division_mono1_sfa] |
Thm* k:, r1,r2:k, q1,q2:.
Thm* q1k+r1 = q2k-r2 q1 = q2 & r1 = 0 & r2 = 0 q2 = q1+1 & r2 = k-r1 | [division4_sfa] |
Thm* k:, r1,r2:k, q1,q2:. q1k-r1 = -(q2k+r2) q1 = -q2 & r1 = r2 | [division3_sfa] |
Thm* k:, r1,r2:k, q1,q2:. q1k-r1 = q2k-r2 q1 = q2 & r1 = r2 | [division2_sfa] |
Thm* k:, r1,r2:k, q1,q2:. q1k+r1 = q2k+r2 q1 = q2 & r1 = r2 | [division1_sfa] |
Thm* a,b:. (a -- b) = 0 ab | [ndiff_zero] |
Thm* a,b:. (a -- b)+b = imax(a;b) | [ndiff_add_eq_imax] |
Thm* a,b:. (a -- (a -- b)) = imin(a;b) | [ndiff_ndiff_eq_imin] |
Thm* a,b:, c:. ((a -- b) -- c) = (a -- (b+c)) | [ndiff_ndiff] |
Thm* a:, b:. ((a+b) -- b) = a | [ndiff_inv] |
Thm* a:. (0 -- a) = 0 | [ndiff_ann_l] |
Thm* a:. (a -- 0) = a | [ndiff_id_r] |
Thm* a,b,c:. aimin(b;c) ab & ac | [imin_ub] |
Thm* a,b,c:. imin(a;b)c ac bc | [imin_lb] |
Thm* a,b,c:. imin(a;b)+c = imin(a+c;b+c) | [imin_add_r] |
Thm* a,b:. imin(a;b) = imin(b;a) | [imin_com] |
Thm* a,b,c:. imin(a;imin(b;c)) = imin(imin(a;b);c) | [imin_assoc] |
Thm* a,b:. imax(a;b) = imax(b;a) | [imax_com] |
Thm* a,b,c:. imax(a;imax(b;c)) = imax(imax(a;b);c) | [imax_assoc] |
Thm* a,b,c:. imax(a;b)+c = imax(a+c;b+c) | [imax_add_r] |
Thm* a,b,c:. aimax(b;c) ab ac | [imax_ub] |
Thm* a,b,c:. imax(a;b)c ac & bc | [imax_lb] |
Thm* a,b:. -imin(a;b) = imax(-a;-b) | [minus_imin] |
Thm* a,b:. -imax(a;b) = imin(-a;-b) | [minus_imax] |
Thm* P:(Prop). (x:. P(|x|)) (x:. P(x)) | [absval_elim] |
Thm* i:. |i| = |-i| | [absval_sym] |
Thm* x,y:. |x| = |y| x = y | [absval_eq] |
Thm* i:, n:. |i|>n i<-n i>n | [absval_lbound] |
Thm* i:, n:. |i|n -ni & in | [absval_ubound] |
Thm* i:. |i| = 0 i = 0 | [absval_zero] |
Thm* i:{...0}. |i| = -i | [absval_neg] |
Thm* i:. |i| = i | [absval_pos] |
Thm* x:. |x| | [absval_wf] |
Thm* i,j:. ij | [multiply_nat_wf] |
Thm* a,b:. ab<0 a<0 & b>0 a>0 & b<0 | [neg_mul_arg_bounds] |
Thm* a,b:. ab>0 a>0 & b>0 a<0 & b<0 | [pos_mul_arg_bounds] |
Thm* a,b:. 0<ab | [mul_bounds_1b] |
Thm* a,b:. 0ab | [mul_bounds_1a] |
Thm* a,b:. a 0 b 0 ab 0 | [int_entire_a] |
Thm* a,b:. ab = 0 a = 0 b = 0 | [int_entire] |
Thm* i1,i2,j1,j2:. i1j1 i2j2 i1i2j1j2 | [multiply_functionality_wrt_le] |
Thm* a,b:, n:. na<nb a<b | [mul_cancel_in_lt] |
Thm* a,b:, n:. na = nb a = b | [mul_cancel_in_eq] |
Thm* a,b:, n:. nanb ab | [mul_cancel_in_le] |
Thm* a,b:, n:. a<b na<nb | [mul_preserves_lt] |
Thm* a,b:, n:. ab nanb | [mul_preserves_le] |
Thm* a,b:. ab = 0 a = 0 & b = 0 | [zero_ann_b] |
Thm* a,b:. a = 0 b = 0 ab = 0 | [zero_ann_a] |
Thm* a,b,n:. ab a+nb+n | [add_mono_wrt_le_rw] |
Thm* a,b,n:. a<b a+n<b+n | [add_mono_wrt_lt_rw] |
Thm* a,b,n:. a = b a+n = b+n | [add_mono_wrt_eq_rw] |
Thm* i,j:. ij i<j+1 | [le_to_lt_rw] |
Thm* i,j:. i<j i+1j | [lt_to_le_rw] |