| OLD | NEW |
| mul preserves le | | Thm* a,b: , n: . a b  n a n b |
| mul preserves lt | | Thm* a,b: , n: . a<b  n a<n b |
| mul cancel in le | | Thm* a,b: , n: . n a n b  a b |
| mul cancel in eq | | Thm* a,b: , n:  . n a = n b  a = b |
| int entire | | Thm* a,b: . a b = 0  a = 0 b = 0 |
| int entire a | | Thm* a,b: . a 0  b 0  a b 0 |
| neg mul arg bounds | | Thm* a,b: . a b<0  a<0 & b>0 a>0 & b<0 |
| multiply nat wf | | Thm* i,j: . i j  |
| absval neg | | Thm* i:{...0}. |i| = -i |
| absval zero | | Thm* i: . |i| = 0  i = 0 |
| absval lbound | | Thm* i: , n: . |i|>n  i<-n i>n |
| absval eq | | Thm* x,y: . |x| = |y|  x = y |
| absval elim | | Thm* P:(  Prop). ( x: . P(|x|))  ( x: . P(x)) |
| minus imin | | Thm* a,b: . -imin(a;b) = imax(-a;-b) |
| imax assoc | | Thm* a,b,c: . imax(a;imax(b;c)) = imax(imax(a;b);c) |
| imin add r | | Thm* a,b,c: . imin(a;b)+c = imin(a+c;b+c) |
| imin ub | | Thm* a,b,c: . a imin(b;c)  a b & a c |
| ndiff ndiff | | Thm* a,b: , c: . ((a -- b) -- c) = (a -- (b+c)) |
| ndiff ndiff eq imin | | Thm* a,b: . (a -- (a -- b)) = imin(a;b) |
| ndiff add eq imax | | Thm* a,b: . (a -- b)+b = imax(a;b) |
| rem to div | | Thm* a: , n:  . (a rem n) = a-(a n) n |
| rem sym | | Thm* a: , b:  . (a rem -b) = (a rem b) |
| rem antisym | | Thm* a: , b:  . ((-a) rem b) = -(a rem b) |
| div 2 to 1 | | Thm* a:{...0}, b: . (a b) = -((-a) b) |
| div 3 to 1 | | Thm* a:{...0}, b:{...-1}. (a b) = ((-a) (-b)) |
| div 4 to 1 | | Thm* a: , b:{...-1}. (a b) = -(a (-b)) |
| rem 2 to 1 | | Thm* a:{...0}, n: . (a rem n) = -((-a) rem n) |
| rem 3 to 1 | | Thm* a:{...0}, n:{...-1}. (a rem n) = -((-a) rem -n) |
| rem 4 to 1 | | Thm* a: , n:{...-1}. (a rem n) = (a rem -n) |
| rem bounds z | | Thm* a: , b:  . |a rem b|<|b| |
| div bounds 1 | | Thm* a: , n: . 0 (a n) |
| div fun sat div nrel | | Thm* a: , n: . Div(a;n;a n) |
| div unique | | Thm* a: , n: , p,q: . Div(a;n;p)  Div(a;n;q)  p = q |
| div lbound 1 | | Thm* a: , n: , k: . k (a n)  k n a |
| rem fun sat rem nrel | | Thm* a: , n: . Rem(a;n;a rem n) |
| div base case | | Thm* a: , n: . a<n  (a n) = 0 |
| div rec case | | Thm* a: , n: . a n  (a n) = ((a-n) n)+1 |
| rem base case | | Thm* a: , n: . a<n  (a rem n) = a |
| rem gen base case | | Thm* a: , n:  . |a|<|n|  (a rem n) = a |
| rem rec case | | Thm* a: , n: . a n  (a rem n) = ((a-n) rem n) |
| rem invariant | | Thm* a,b: , n: . ((a+b n) rem n) = (a rem n) |
| rem addition | | Thm* i,j: , n: . (((i rem n)+(j rem n)) rem n) = ((i+j) rem n) |
| rem rem to rem | | Thm* a: , n: . ((a rem n) rem n) = (a rem n) |
| rem eq args z | | Thm* a: , b:  . |a| = |b|  (a rem b) = 0 |
| modulus wf | | Thm* a: , n: . (a mod n)  |
| mod bounds | | Thm* a: , n: . 0 (a mod n) & (a mod n)<n |
| div floor mod sum | | Thm* a: , n: . a = (a  n) n+(a mod n) |
| int upper well founded | | Thm* n: . WellFnd{i}({n...};x,y.x<y) |
| int lower well founded | | Thm* n: . WellFnd{i}({...n};x,y.x>y) |
| int seg well founded down | | Thm* i: , j:{i...}. WellFnd{u}({i..j };x,y.x>y) |
| decidable ex int seg | | Thm* i,j: , F:({i..j } Prop). ( k:{i..j }. Dec(F(k)))  Dec( k:{i..j }. F(k)) |
| decidable all int seg | | Thm* i,j: , F:({i..j } Prop). ( k:{i..j }. Dec(F(k)))  Dec( k:{i..j }. F(k)) |