| | Who Cites absval? |
|
| absval |
Def |i| == if 0 i i else -i fi |
| | |
Thm* x: . |x|  |
|
| nat |
Def == {i: | 0 i } |
| | | Thm* Type |
|
| so_lambda2 | Def ( 1,2. b(1;2))(1,2) == b(1;2) |
|
| wellfounded |
Def WellFnd{i}(A;x,y.R(x;y))
== P:(A Prop). ( j:A. ( k:A. R(k;j)  P(k))  P(j))  { n:A. P(n)} |
| | | Thm* A:Type{i}, r:(A A Prop{i}). WellFnd{i}(A;x,y.r(x,y)) Prop{i'} |
|
| le_int |
Def i j ==  j < i |
| | | Thm* i,j: . i j  |
|
| le |
Def A B == B < A |
| | | Thm* i,j: . i j Prop |
|
| lt_int |
Def i < j == if i < j true ; false fi |
| | | Thm* i,j: . i < j  |
|
| bnot |
Def  b == if b false else true fi |
| | | Thm* b: .  b  |
|
| not |
Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |