(9steps) PrintForm Definitions Lemmas int 2 Sections StandardLIB Doc

At: rem bounds z 2 2

1. a:, b:. |a rem b| < |b|
2. a:
3. b:
4. 0b

|a rem b| < |b|

By:
RWH (RevLemmaC Thm* a:, b:. (a rem -b) = (a rem b)) 0
THEN
RWN 2 (LemmaC Thm* i:. |i| = |-i|) 0


Generated subgoal:

1 |a rem -b| < |-b|


About:
intnatural_numberminusremainderless_thanall

(9steps) PrintForm Definitions Lemmas int 2 Sections StandardLIB Doc