| Rank | Theorem | Name |
| 4 | Thm* e:({a..b }  ). ( i:{a..b }. e(i)) = 1  ( i:{a..b }. e(i) = 1) | [iter_nat_prod_one_iff_factors_one] |
| cites the following: |
| 2 | Thm* a,b: , P:({a..b } Prop). ( i:{a..b }. P(i))  (And i:{a..b }. P(i)) | [all_intseg_vs_iter_and] |
| 0 | Thm* f:(A A A), u:A, a,b: , e:({a..b } A).
Thm* b a  (Iter(f;u) i:{a..b }. e(i)) = u | [iter_via_intseg_null] |
| 1 | Thm* f:(A A A), u:A, a,b: , e:({a..b } A).
Thm* a<b
Thm* 
Thm* (Iter(f;u) i:{a..b }. e(i)) = f((Iter(f;u) i:{a..b-1 }. e(i)),e(b-1)) | [iter_via_intseg_split_last] |
| 3 | Thm* x,y: . x y = 1  x = 1 & y = 1 | [nat_prod_one_iff_factors_one] |
| 1 | Thm* f:(A A A), u:A, a,b: , e:({a..b } A).
Thm* b a  (Iter(f;u) i:{a..b }. e(i)) = (Iter(f;u) i:{a..a }. e(i)) | [iter_via_intseg_nullnorm] |