(14steps total)
PrintForm
Definitions
Lemmas
IteratedBinops
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
An iterated product is one iff each value is one.
At:
iter
nat
prod
one
iff
factors
one
a
,
b
:
,
e
:({
a
..
b
}
). (
i
:{
a
..
b
}.
e
(
i
)) = 1
(
i
:{
a
..
b
}.
e
(
i
) = 1)
By:
Thm*
a
,
b
:
,
P
:({
a
..
b
}
Prop). (
i
:{
a
..
b
}.
P
(
i
))
(And
i
:{
a
..
b
}.
P
(
i
))
Asserted
THEN
Guarding (
i
:<type>. <prop>) Rewrite by Hyp:-1 THEN Thin Hyp:-1
THEN
Analyze
Generated subgoal:
1
1.
a
:
b
:
,
e
:({
a
..
b
}
). (
i
:{
a
..
b
}.
e
(
i
)) = 1
(And
i
:{
a
..
b
}.
e
(
i
) = 1)
13
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(14steps total)
PrintForm
Definitions
Lemmas
IteratedBinops
Sections
DiscrMathExt
Doc