(7steps total)
PrintForm
Definitions
Lemmas
IteratedBinops
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
sum
exponent
1
1
1.
i
:
2.
x
:
3.
y
:
4.
x
y
i
x
i
y
=
i
(
x
+
y
)
By:
Rewrite by
Thm*
f
:(
A
A
A
),
u
:
A
,
a
,
b
:
,
e
:({
a
..
b
}
A
),
k
:
.
Thm*
(Iter(
f
;
u
)
i
:{
a
..
b
}.
e
(
i
)) = (Iter(
f
;
u
)
j
:{
a
+
k
..
b
+
k
}.
e
(
j
-
k
))
Using:[
A
:=
|
f
:=
x
,
y
.
x
y
|
u
:= 1 |
a
:= 0 |
e
(
z
):=
i
|
b
:=
y
|
k
:=
x
]
THEN
ArithSimp Concl
Generated subgoal:
1
i
x
(
j
:{
x
..
x
+
y
}.
i
) =
i
(
x
+
y
)
1
step
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(7steps total)
PrintForm
Definitions
Lemmas
IteratedBinops
Sections
DiscrMathExt
Doc