(7steps total) PrintForm Definitions Lemmas IteratedBinops Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: sum exponent 1 1

1. i : 
2. x : 
3. y : 
4. xy
  ixiy = i(x+y)


By: Rewrite by
Thm*  f:(AAA), u:Aa,b:e:({a..b}A), k:.
Thm*  (Iter(f;ui:{a..b}. e(i)) = (Iter(f;uj:{a+k..b+k}. e(j-k))
Using:[A:=  | f:= x,yxy | u:= 1 | a:= 0 | e(z):= i | b:= y | k:= x]
THEN
ArithSimp Concl


Generated subgoal:

1   ix( j:{x..x+y}. i) = i(x+y)
1 step

About:
intnatural_numberaddsubtractmultiplylambdaapplyfunctionuniverseequalall
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(7steps total) PrintForm Definitions Lemmas IteratedBinops Sections DiscrMathExt Doc