lang_power |
Def (L n) == if n= 0  else ((L n-1) L) fi (recursive)
Thm* Alph:Type, L:LangOver(Alph), n: . (L n) LangOver(Alph)
|
languages |
Def LangOver(Alph) == Alph* Prop
Thm* Alph:Type{i}. LangOver(Alph) Type{i'}
|
nat |
Def == {i: | 0 i }
Thm* Type
|
lang_prod |
Def (L M)(l) == i:{0...||l||}. L(l[0..i ]) & M(l[i..||l|| ])
Thm* Alph:Type, M,N:LangOver(Alph). (M N) LangOver(Alph)
|
lang_sing |
Def  (l) == null(l)
Thm* Alph:Type.  LangOver(Alph)
|
eq_int |
Def i= j == if i=j true ; false fi
Thm* i,j: . i= j 
|
int_iseg |
Def {i...j} == {k: | i k & k j }
Thm* i,j: . {i...j} Type
|
le |
Def A B == B < A
Thm* i,j: . i j Prop
|
length |
Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A*. ||l||
Thm* ||nil|| 
|
segment |
Def as[m..n ] == firstn(n-m;nth_tl(m;as))
Thm* T:Type, as:T*, m,n: . (as[m..n ]) T*
|
null |
Def null(as) == Case of as; nil true ; a.as' false
Thm* T:Type, as:T*. null(as)
Thm* null(nil) 
|
assert |
Def b == if b True else False fi
Thm* b: . b Prop
|
not |
Def A == A  False
Thm* A:Prop. ( A) Prop
|
nth_tl |
Def nth_tl(n;as) == if n 0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A*, i: . nth_tl(i;as) A*
|
firstn |
Def firstn(n;as)
== Case of as; nil nil ; a.as' if 0 < n a.firstn(n-1;as') else nil fi
(recursive)
Thm* A:Type, as:A*, n: . firstn(n;as) A*
|
tl |
Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A*. tl(l) A*
|
le_int |
Def i j ==  j < i
Thm* i,j: . i j 
|
lt_int |
Def i < j == if i < j true ; false fi
Thm* i,j: . i < j 
|
bnot |
Def  b == if b false else true fi
Thm* b: .  b 
|