assert |
Def b == if b True else False fi
Thm* b: . b Prop
|
iff |
Def P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B) Prop
|
int_iseg |
Def {i...j} == {k: | i k & k j }
Thm* i,j: . {i...j} Type
|
length |
Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A*. ||l||
Thm* ||nil|| 
|
null |
Def null(as) == Case of as; nil true ; a.as' false
Thm* T:Type, as:T*. null(as)
Thm* null(nil) 
|
segment |
Def as[m..n ] == firstn(n-m;nth_tl(m;as))
Thm* T:Type, as:T*, m,n: . (as[m..n ]) T*
|
rev_implies |
Def P  Q == Q  P
Thm* A,B:Prop. (A  B) Prop
|
le |
Def A B == B < A
Thm* i,j: . i j Prop
|
nth_tl |
Def nth_tl(n;as) == if n 0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A*, i: . nth_tl(i;as) A*
|
firstn |
Def firstn(n;as)
== Case of as; nil nil ; a.as' if 0 < n a.firstn(n-1;as') else nil fi
(recursive)
Thm* A:Type, as:A*, n: . firstn(n;as) A*
|
not |
Def A == A  False
Thm* A:Prop. ( A) Prop
|
tl |
Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A*. tl(l) A*
|
le_int |
Def i j ==  j < i
Thm* i,j: . i j 
|
lt_int |
Def i < j == if i < j true ; false fi
Thm* i,j: . i < j 
|
bnot |
Def  b == if b false else true fi
Thm* b: .  b 
|