| Who Cites equivalence? |
|
equivalence | Def {T } == {f:(T T  )| ( x:T. (f(x,x))) & ( x,y:T. (f(x,y))  (f(y,x))) & ( x,y,z:T. (f(x,y))  (f(y,z))  (f(x,z))) } |
| | Thm* T:Type{i}. {T } Type{i'} |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
is_member | Def x( eq) L == (letrec is_member x eq L = (Case of L; nil false ; h.t if eq(x,h) true else is_member(x,eq,t) fi) ) (x,eq,L) |
| | Thm* T:Type, eq:(T T  ), u:T. u( eq) nil  |
| | Thm* T:Type, eq:(T T  ), x:T, L:T List. x( eq) L  |
|
nequal | Def a b T == a = b T |
| | Thm* A:Type, x,y:A. (x y) Prop |
|
rev_implies | Def P  Q == Q  P |
| | Thm* A,B:Prop. (A  B) Prop |
|
letrec_body | Def = b == b |
|
letrec_arg | Def x b(x) (x) == b(x) |
|
letrec | Def (letrec f b(f)) == b((letrec f b(f)) ) (recursive) |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |