(9steps)
PrintForm
Definitions
Lemmas
mb
automata
1
Sections
GenAutomata
Doc
At:
assert
st
eq
1
1
1
1.
s1:
SimpleType
2.
u:
SimpleType
Type{i'}
3.
w:
s1:{v:SimpleType| u(v) }
s2:SimpleType. st_eq(s1;s2)
s1 = s2
4.
x:
Label+Unit
5.
s2:
SimpleType
6.
u1:
SimpleType
Type{i'}
7.
w1:
s2:{v:SimpleType| u1(v) }
st_eq(tree_leaf(x);s2)
tree_leaf(x) = s2
8.
x1:
Label+Unit
9.
InjCase(x; x'. InjCase(x1; y'. x' =
y'; b. false
); a. InjCase(x1; y'. false
; b. true
))
tree_leaf(x) = tree_leaf(x1)
SimpleType
By:
Analyze 8
THEN
Analyze 4
THEN
All Reduce
THEN
Try Trivial
THEN
Try (Fold `typ` 0)
Generated subgoals:
1
4.
x3:
Label
5.
s2:
SimpleType
6.
u1:
SimpleType
Type{i'}
7.
w1:
s2:{v:SimpleType| u1(v) }
st_eq(tree_leaf(inl(x3));s2)
tree_leaf(inl(x3)) = s2
8.
x2:
Label
9.
x3 =
x2
x3 = x2
2
4.
y1:
Unit
5.
s2:
SimpleType
6.
u1:
SimpleType
Type{i'}
7.
w1:
s2:{v:SimpleType| u1(v) }
st_eq(tree_leaf(inr(y1));s2)
tree_leaf(inr(y1)) = s2
8.
y:
Unit
9.
True
tree_leaf(inr(y1)) = tree_leaf(inr(y))
SimpleType
About:
(9steps)
PrintForm
Definitions
Lemmas
mb
automata
1
Sections
GenAutomata
Doc