At:
assert term eq
2
1.
a: Tree(ts())
2.
u: Tree(ts())Type{i'}
3.
w: a:{v:Tree(ts())| u(v) }b:Tree(ts()). term_eq(a;b) a = b
4.
x: ts()
5.
b: Tree(ts())
6.
u1: Tree(ts())Type{i'}
7.
w1: b:{v:Tree(ts())| u1(v) }term_eq(tree_leaf(x);b) tree_leaf(x) = b Tree(ts())
8.
y1: {v:Tree(ts())| u1(v) }
9.
y2: {v:Tree(ts())| u1(v) }
False tree_leaf(x) = tree_node( < y1, y2 > )
By:
Auto
THEN
ApFunToHypEquands `z' Case(z) Case x;y = > 0 Default = > 1 -1
THEN
Reduce -1
THEN
TreeInd -1
THEN
Reduce 0
Generated subgoals:
None
About: