At:
closed rel mng 2
1
2
2
2
1
1
1
1
2
1
1
1.
r: rel()
2.
rho: Decl{i}
3.
ds: Collection{i}(dec())
4.
daa: Collection{i}(dec())
5.
da1: Collection{i}(SimpleType)
6.
da2: Collection{i}(SimpleType)
7.
de: sig()
8.
s: {[[ds]] rho}
9.
e: {sig_mng{i:l}
(de; rho)}
10.
a1: Top
11.
a2: Top
12.
tr: trace_env([[daa]] rho)
13.
trace_consistent_rel(rho;daa;tr.proj;r)
14.
tc(r;ds;da1;de)
15.
tc(r;ds; < > ;de) & a1
[[ < > ]] rho & a2
[[ < > ]] rho
16.
aa: Term List
17.
u: Term
18.
v: Term List
19.
xx:Top.
reduce(
t,vs. term_free_vars(t) @ vs;nil;v) = nil

(list_accum(x,t.x([[t]] 1of(e) s a2 tr);xx;v) ~ list_accum(x,t.x([[t]] 1of(e) s a1 tr);xx;v))
20.
xx: Top
21.
(term_free_vars(u) @ reduce(
t,vs. term_free_vars(t) @ vs;nil;v)) = nil
22.
u1: Term
Type{i'}
23.
w: u:{v1:Term| u1(v1) }
term_iterate(
f.nil;
f.nil;
f.nil;
v.[v];
P.nil;
x,y. x @ y;u) = nil

(iterate(statevar x- > s.x
statevar x'- > s.x
funsymbol f- > 1of(e).f
freevar x- > a2
trace(P)- > tr.P
x(y)- > x(y)
over u) ~ iterate(statevar x- > s.x
statevar x'- > s.x
funsymbol f- > 1of(e).f
freevar x- > a1
trace(P)- > tr.P
x(y)- > x(y)
over u))
24.
x: Label
[x] = nil 
(a2 ~ a1)
By:
Analyze 0
THEN
ApFunToHypEquands `zz' ||zz||
-1
THEN
Reduce -1
Generated subgoals:
None
About: