(51steps) PrintForm Definitions Lemmas mb automata 4 Sections GenAutomata Doc

At: vc trace correct action decl lemma 1 2 1 1 2 2 1 1 1 1 2 1

1. A: ioa{i:l}()
2. I: Collection(rel())
3. rho: Decl
4. de: sig()
5. e: {[[de]] rho}
6. te: LabelLabel
7. tc_ioa(A;de)
8. ioa_mentions_trace(A)
9. trace_consistent_pred(rho;A.da;te;I)
10. tc_pred(I;A.ds; < > ;de)
11. covers_pred(A;I)
12. guarded_trace(A.da;te;I)
13. closed_pred(I)
14. single_valued_decls(A.ds)
15. s0: [[A]] rho de e.state
16. x: [[A]] rho de e.state
17. act: [[A]] rho de e.action
18. x': [[A]] rho de e.state
19. tr: ([[A.da]] rho) List
20. [[A]] rho de e.init(s0)
21. trace_reachable([[A]] rho de e;s0;mk_trace_env(tr, te).trace;x)
22. r:rel(). r I [[r]] rho A.ds < > de e x mk_trace_env(tr, te)
23. [[A]] rho de e.trans(x,act,x')
24. (t:dec(). t A.da & t.lbl = kind(act)) (r:rel(). r I [[r]] rho A.ds < > de e x' tappend(mk_trace_env(tr, te);act))
25. (r:rel(). (r@0:rel(). r@0 I & r wp_rel(A;kind(act);r@0)) [[r]] rho A.ds dec_lookup(A.da;kind(act)) de e x value(act) tappend(mk_trace_env(tr, te);act)) (r:rel(). r I [[r]] rho A.ds < > de e x' tappend(mk_trace_env(tr, te);act))
26. r: rel()
27. r I
28. act ([[A.da]] rho)
29. [[r]] rho A.ds < > de e x' tappend(mk_trace_env(tr, te);act) [[wp_rel(A;kind(act);r)]] rho A.ds dec_lookup(A.da;kind(act)) de e x value(act) tappend(...;act)
30. r@0: rel()
31. r@0 wp_rel(A;kind(act);r)
32. rel_eq(rel_unprime(r@0);rel_unprime(r))
33. affects_trace_rel(te;kind(act);r)

[[rel_unprime(r@0)]] rho A.ds dec_lookup(A.da;kind(act)) de e x value(act) tappend(mk_trace_env(tr, te);act)

By:
RWO "assert_rel_eq" -2
THEN
HypSubstSq -2 0


Generated subgoal:

132. rel_unprime(r@0) = rel_unprime(r)
33. affects_trace_rel(te;kind(act);r)
[[rel_unprime(r)]] rho A.ds dec_lookup(A.da;kind(act)) de e x value(act) tappend(mk_trace_env(tr, te);act)

About:
listboolassertitapplyfunctionequalmemberimpliesandallexists

(51steps) PrintForm Definitions Lemmas mb automata 4 Sections GenAutomata Doc