is mentioned by
Thm* P:(TProp), c1,c2:Collection(T). c1 = c2 ((xc1.P(x)) (xc2.P(x))) | [col_all_functionality] |
Thm* c:Collection(T), P:(TProp). (xc.P(x)) (x:T. x c P(x)) | [col_all_iff] |
Thm* l:Collection(T) List, x:T List. x col_list_prod(l) ||x|| = ||l|| & (i:. i < ||x|| x[i] l[i]) | [member_col_list_prod] |
Thm* c:Collection(T), f:(TCollection(T')), y:T'. y (xc.f(x)) (x:T. x c & y f(x)) | [member_col_accum] |
Thm* a,b:Collection(T), x:T. x a + b x a x b | [member_col_add] |
Thm* c:Collection(T), f:(TT'), x:T'. x < f(y) | y c > (y:T. y c & x = f(y)) | [member_col_map] |
Thm* C:(ICollection(T)), x:T. x i:I. C(i) (i:I. x C(i)) | [member_col_union] |
Thm* c1:Collection(T). c1 c1 | [col_le_reflexive] |
Thm* f:(TProp), c:Collection(T), x:T. x < i c | f(i) > x c & f(x) | [member_col_filter] |
Thm* a1,b1,a2,b2:Collection(T). a1 = b1 a2 = b2 (a1 = a2 b1 = b2) | [col_equal_functionality] |
Thm* a,b,c:Collection(T). a b b c a c | [col_le_transitivity] |
Thm* c1,c2:Collection(T). c1 = c2 c1 c2 | [col_le_weakening] |
Thm* c:Collection(T). < > c | [col_none_le] |
Thm* c1,c2:Collection(T), t1,t2:T. t1 = t2 c1 = c2 (t1 c1 t2 c2) | [col_member_functionality] |
Thm* c1,c2,c3:Collection(T). c1 = c2 c2 = c3 c1 = c3 | [col_equal_transitivity] |
Thm* c1,c2:Collection(T). c1 = c2 c2 = c1 | [col_equal_inversion] |
Thm* c1,c2:Collection(T). c1 = c2 c1 = c2 | [col_equal_weakening] |
Thm* T:Type{i'}, x:T. x < > False | [member_col_none] |
Def (xc.P(x)) == x:T. x c P(x) | [col_all] |
Def col_list_prod(l)(x) == ||x|| = ||l|| & (i:. i < ||x|| x[i] l[i]) | [col_list_prod] |
Def c1 c2 == x:T. x c1 x c2 | [col_le] |
Def c1 = c2 == x:T. x c1 x c2 | [col_equal] |
In prior sections: core fun 1 well fnd int 1 bool 1 int 2 list 1
Try larger context: GenAutomata