Thm* P:(T Prop), c1,c2:Collection(T).
c1 = c2  (( x c1.P(x))  ( x c2.P(x))) | [col_all_functionality] |
Thm* c:Collection(T), P:(T Prop). ( x c.P(x))  ( x:T. x c  P(x)) | [col_all_iff] |
Thm* l:Collection(T) List, x:T List.
x col_list_prod(l)  ||x|| = ||l|| & ( i: . i < ||x||  x[i] l[i]) | [member_col_list_prod] |
Thm* c:Collection(T), f:(T Collection(T')), y:T'.
y ( x c.f(x))  ( x:T. x c & y f(x)) | [member_col_accum] |
Thm* a,b:Collection(T), x:T. x a + b  x a x b | [member_col_add] |
Thm* c:Collection(T), f:(T T'), x:T'.
x < f(y) | y c >  ( y:T. y c & x = f(y)) | [member_col_map] |
Thm* C:(I Collection(T)), x:T. x i:I. C(i)  ( i:I. x C(i)) | [member_col_union] |
Thm* c1:Collection(T). c1 c1 | [col_le_reflexive] |
Thm* f:(T Prop), c:Collection(T), x:T. x < i c | f(i) >  x c & f(x) | [member_col_filter] |
Thm* a1,b1,a2,b2:Collection(T).
a1 = b1  a2 = b2  (a1 = a2  b1 = b2) | [col_equal_functionality] |
Thm* a,b,c:Collection(T). a b  b c  a c | [col_le_transitivity] |
Thm* c1,c2:Collection(T). c1 = c2  c1 c2 | [col_le_weakening] |
Thm* c:Collection(T). < > c | [col_none_le] |
Thm* c1,c2:Collection(T), t1,t2:T.
t1 = t2  c1 = c2  (t1 c1  t2 c2) | [col_member_functionality] |
Thm* c1,c2,c3:Collection(T). c1 = c2  c2 = c3  c1 = c3 | [col_equal_transitivity] |
Thm* c1,c2:Collection(T). c1 = c2  c2 = c1 | [col_equal_inversion] |
Thm* c1,c2:Collection(T). c1 = c2  c1 = c2 | [col_equal_weakening] |
Thm* T:Type{i'}, x:T. x < >  False | [member_col_none] |
Def ( x c.P(x)) == x:T. x c  P(x) | [col_all] |
Def col_list_prod(l)(x) == ||x|| = ||l|| & ( i: . i < ||x||  x[i] l[i]) | [col_list_prod] |
Def c1 c2 == x:T. x c1  x c2 | [col_le] |
Def c1 = c2 == x:T. x c1  x c2 | [col_equal] |