| | Some definitions of interest. |
|
| lpath | Def lpath(p)
Def == i: (||p||-1).
Def == destination(p[i]) = source(p[(i+1)]) & p[(i+1)] = lnk-inv(p[i]) IdLnk |
| | | Thm* p:IdLnk List. lpath(p) Prop |
|
| IdLnk | Def IdLnk == Id Id  |
| | | Thm* IdLnk Type |
|
| Id | Def Id == Atom  |
| | | Thm* Id Type |
|
| l_interval | Def l_interval(l;j;i) == mklist(i-j; x.l[(j+x)]) |
| | | Thm* T:Type, l:T List, i: ||l||, j: (i+1). l_interval(l;j;i) T List |
|
| last | Def last(L) == L[(||L||-1)] |
| | | Thm* T:Type, L:T List. null(L)  last(L) T |
|
| select | Def l[i] == hd(nth_tl(i;l)) |
| | | Thm* A:Type, l:A List, n: . 0 n  n<||l||  l[n] A |
|
| hd | Def hd(l) == Case of l; nil "?" ; h.t h |
| | | Thm* A:Type, l:A List. ||l|| 1  hd(l) A |
|
| int_seg | Def {i..j } == {k: | i k < j } |
| | | Thm* m,n: . {m..n } Type |
|
| ldst | Def destination(l) == 1of(2of(l)) |
| | | Thm* l:IdLnk. destination(l) Id |
|
| length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | | Thm* A:Type, l:A List. ||l||  |
| | | Thm* ||nil||  |
|
| lsrc | Def source(l) == 1of(l) |
| | | Thm* l:IdLnk. source(l) Id |
|
| not | Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |