Definitions mb event system 2 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
rel_plusDef R^+(x,y) == n:x R^n y
Thm* T:Type, R:(TTType). R^+  TTType
nat_plusDef  == {i:| 0<i }
Thm*   Type
rel_expDef R^n == if n=0 x,yx = y  T else x,yz:T. (x R z) & (z R^n-1 y) fi
Def (recursive)
Thm* n:T:Type, R:(TTProp). R^n  TTProp
transDef Trans x,y:TE(x;y) == a,b,c:TE(a;b E(b;c E(a;c)
Thm* T:Type, E:(TTProp). (Trans x,y:TE(x,y))  Prop

About:
ifthenelseintnatural_numbersubtractless_thanset
lambdaapplyfunctionrecursive_def_noticeuniverseequal
memberpropimpliesandallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 2 Sections EventSystems Doc