Definitions mb event system 2 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
Msg_subDef Msg_sub(lM) == {m:Msg(M)| haslink(lm) }
Thm* M:(IdLnkIdType), l:IdLnk. Msg_sub(lM Type
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
IdDef Id == Atom
Thm* Id  Type
assertDef b == if b True else False fi
Thm* b:b  Prop
eventtypeDef eventtype(k;loc;V;M;e) == kindcase(k(e);a.V(loc(e),a);l,t.M(l,t))
Thm* E:Type, V:(IdIdType), M:(IdLnkIdType), loc:(EId), k:(EKnd),
Thm* e:E. eventtype(k;loc;V;M;e Type
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
int_segDef {i..j} == {k:i  k < j }
Thm* m,n:. {m..n Type
isrcvDef isrcv(k) == isl(k)
Thm* k:Knd. isrcv(k 
lengthDef ||as|| == Case of as; nil  0 ; a.as'  ||as'||+1  (recursive)
Thm* A:Type, l:A List. ||l||  
Thm* ||nil||  
lnkDef lnk(k) == 1of(outl(k))
Thm* k:Knd. isrcv(k lnk(k IdLnk
strongwellfoundedDef SWellFounded(R(x;y)) == f:(T). x,y:TR(x;y f(x)<f(y)
Thm* T:Type, R:(TTType). SWellFounded(R(x,y))  Prop
notDef A == A  False
Thm* A:Prop. (A Prop
tagofDef tag(k) == 2of(outl(k))
Thm* k:Knd. isrcv(k tag(k Id
transDef Trans x,y:TE(x;y) == a,b,c:TE(a;b E(b;c E(a;c)
Thm* T:Type, E:(TTProp). (Trans x,y:TE(x,y))  Prop

About:
productlistnillist_indboolifthenelseassert
intnatural_numberaddless_thanatomunionsetapplyfunctionrecursive_def_notice
universememberpropimpliesandfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 2 Sections EventSystems Doc