Definitions mb event system 3 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
es-leDef e  e'  == (e <loc e' e = e'  E
event_systemDef ES
Def == E:Type
Def == EqDecider(E)(T:IdIdType
Def == EqDecider(E)(V:IdIdType
Def == EqDecider(E)(M:IdLnkIdType
Def == EqDecider(E)(Top(loc:EId
Def == EqDecider(E)(Top(kind:EKnd
Def == EqDecider(E)(Top(val:(e:Eeventtype(kind;loc;V;M;e))
Def == EqDecider(E)(Top(when:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(after:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(sends:(l:IdLnkE(Msg_sub(lM) List))
Def == EqDecider(E)(Top(sender:{e:Eisrcv(kind(e)) }E
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||sends
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||(lnk(kind(e))
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||,sender(e))||)
Def == EqDecider(E)(Top(first:E
Def == EqDecider(E)(Top(pred:{e':E(first(e')) }E
Def == EqDecider(E)(Top(causl:EEProp
Def == EqDecider(E)(Top(ESAxioms{i:l}
Def == EqDecider(E)(Top(ESAxioms(E;
Def == EqDecider(E)(Top(ESAxioms(T;
Def == EqDecider(E)(Top(ESAxioms(M;
Def == EqDecider(E)(Top(ESAxioms(loc;
Def == EqDecider(E)(Top(ESAxioms(kind;
Def == EqDecider(E)(Top(ESAxioms(val;
Def == EqDecider(E)(Top(ESAxioms(when;
Def == EqDecider(E)(Top(ESAxioms(after;
Def == EqDecider(E)(Top(ESAxioms(sends;
Def == EqDecider(E)(Top(ESAxioms(sender;
Def == EqDecider(E)(Top(ESAxioms(index;
Def == EqDecider(E)(Top(ESAxioms(first;
Def == EqDecider(E)(Top(ESAxioms(pred;
Def == EqDecider(E)(Top(ESAxioms(causl)
Def == EqDecider(E)(Top(Top))
Thm* ES  Type{i'}
IdDef Id == Atom
Thm* Id  Type
es-EDef E == 1of(es)
es-causlDef (e < e')
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(
Def == 1of(es)))))))))))))))))
Def == (e
Def == ,e')
es-intervalDef [ee'] == filter(ev.es-ble{i:l}(es;e;ev);before(e') @ [e'])
es-locDef loc(e) == 1of(2of(2of(2of(2of(2of(2of(es)))))))(e)
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
l_allDef (xL.P(x)) == x:T. (x  L P(x)
Thm* T:Type, L:T List, P:(TProp). (xL.P(x))  Prop
l_memberDef (x  l) == i:i<||l|| & x = l[i T
Thm* T:Type, x:Tl:T List. (x  l Prop

About:
productproductlistconsnilboolnatural_numberless_thanatom
setlambdaapplyfunctionuniverseequalmembertop
propimpliesandorallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 3 Sections EventSystems Doc