Definitions mb event system 3 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
event_systemDef ES
Def == E:Type
Def == EqDecider(E)(T:IdIdType
Def == EqDecider(E)(V:IdIdType
Def == EqDecider(E)(M:IdLnkIdType
Def == EqDecider(E)(Top(loc:EId
Def == EqDecider(E)(Top(kind:EKnd
Def == EqDecider(E)(Top(val:(e:Eeventtype(kind;loc;V;M;e))
Def == EqDecider(E)(Top(when:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(after:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(sends:(l:IdLnkE(Msg_sub(lM) List))
Def == EqDecider(E)(Top(sender:{e:Eisrcv(kind(e)) }E
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||sends
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||(lnk(kind(e))
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||,sender(e))||)
Def == EqDecider(E)(Top(first:E
Def == EqDecider(E)(Top(pred:{e':E(first(e')) }E
Def == EqDecider(E)(Top(causl:EEProp
Def == EqDecider(E)(Top(ESAxioms{i:l}
Def == EqDecider(E)(Top(ESAxioms(E;
Def == EqDecider(E)(Top(ESAxioms(T;
Def == EqDecider(E)(Top(ESAxioms(M;
Def == EqDecider(E)(Top(ESAxioms(loc;
Def == EqDecider(E)(Top(ESAxioms(kind;
Def == EqDecider(E)(Top(ESAxioms(val;
Def == EqDecider(E)(Top(ESAxioms(when;
Def == EqDecider(E)(Top(ESAxioms(after;
Def == EqDecider(E)(Top(ESAxioms(sends;
Def == EqDecider(E)(Top(ESAxioms(sender;
Def == EqDecider(E)(Top(ESAxioms(index;
Def == EqDecider(E)(Top(ESAxioms(first;
Def == EqDecider(E)(Top(ESAxioms(pred;
Def == EqDecider(E)(Top(ESAxioms(causl)
Def == EqDecider(E)(Top(Top))
Thm* ES  Type{i'}
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
IdDef Id == Atom
Thm* Id  Type
assertDef b == if b True else False fi
Thm* b:b  Prop
es-EDef E == 1of(es)
es-kindDef kind(e) == 1of(2of(2of(2of(2of(2of(2of(2of(es))))))))(e)
es-locDef loc(e) == 1of(2of(2of(2of(2of(2of(2of(es)))))))(e)
es-senderDef sender(e)
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(es)))))))))))))(e)
isrcvDef isrcv(k) == isl(k)
Thm* k:Knd. isrcv(k 
lnkDef lnk(k) == 1of(outl(k))
Thm* k:Knd. isrcv(k lnk(k IdLnk
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id
tagofDef tag(k) == 2of(outl(k))
Thm* k:Knd. isrcv(k tag(k Id
outlDef outl(x) == InjCase(xyyz. "???")
Thm* A,B:Type, x:A+B. isl(x outl(x A
pi1Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p A
pi2Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p B(1of(p))
rcvDef rcv(ltg) == inl(<l,tg>)
Thm* l:IdLnk, tg:Id. rcv(ltg Knd

About:
pairspreadspreadproductproductlistboolifthenelseassertnatural_numberatom
tokenunioninldecidesetapply
functionuniversemembertoppropimpliesfalsetrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 3 Sections EventSystems Doc